If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-2(8t^2-14.5-3)
We move all terms to the left:
0-(-2(8t^2-14.5-3))=0
We add all the numbers together, and all the variables
-(-2(8t^2-14.5-3))=0
We calculate terms in parentheses: -(-2(8t^2-14.5-3)), so:We get rid of parentheses
-2(8t^2-14.5-3)
We multiply parentheses
-16t^2+29+6
We add all the numbers together, and all the variables
-16t^2+35
Back to the equation:
-(-16t^2+35)
16t^2-35=0
a = 16; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·16·(-35)
Δ = 2240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2240}=\sqrt{64*35}=\sqrt{64}*\sqrt{35}=8\sqrt{35}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{35}}{2*16}=\frac{0-8\sqrt{35}}{32} =-\frac{8\sqrt{35}}{32} =-\frac{\sqrt{35}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{35}}{2*16}=\frac{0+8\sqrt{35}}{32} =\frac{8\sqrt{35}}{32} =\frac{\sqrt{35}}{4} $
| x/5-x/10=+8=x+8 | | 25x+10(6x)=275 | | 3a-10=2a-25 | | x+((-5-x)/4=(x/8)) | | 2x+9/4-x-2/6=3 | | x=882 | | 85x=882 | | 19+4k=3k | | 25x+60x=882 | | 15=x/30-1 | | i-5+5=-4 | | a-(.25(a-540000))-53100=520650 | | 25x+10(6x)=882 | | i-5+5=4 | | ½(x+3)=6 | | 5h+3=-17 | | -36=9(-x=3) | | 5h+3=17 | | 2.50x+5.00=5.00x | | 7-x=6x | | a-(.09(a-170000))=220050 | | 7x/(2x+7)=7 | | a-(.09(a-360000))=220050 | | 7x-9=24 | | 7x–9=26 | | 7x–9=26 | | a-(.2(a-360000))-17100=450900 | | 8x²-8=0 | | -12=x/6-9 | | -6+18=(14x-6)+(12x-3) | | 7x+5/5-x-11/14=3(x-25)/7+5 | | a-(.2(a-360000))-17100=414900 |